TRR 358 - Ganzzahlige Strukturen in Geometrie und Darstellungstheorie

?berblick

Ganzzahlige Strukturen treten an verschiedenen Stellen verteilt über die gesamte Mathematik auf. Wir begegnen ihnen als Gitter im Euklidischen Raum, als ganze Modelle von reduktiven Gruppen oder von Schemata der algebraischen Geometrie oder als ganzzahlige Darstellungen von Gruppen und Algebren. Selbst Fragen über die grundlegendste ganzzahlige Struktur, den Ring der ganzen Zahlen, führen schnell in die Analysis, Algebra oder Geometrie. ?berhaupt lassen sich ganzzahlige Strukturen erfolgreich vor allem dann untersuchen, wenn wir sie aus verschiedenen Blickwinkeln betrachten. Oft erfordern diese Untersuchungen den Einsatz modernster Methoden und bringen überraschende Verbindungen ans Licht.Wandmustergruppen, also diskrete Gruppen von Bewegungen der Ebene, die zwei unabh?ngige Verschiebungen enthalten, k?nnen diesen Punkt illustrieren. 365体育_足球比分网¥投注直播官网 liegen doppelt periodischen Mustern zugrunde, wie wir sie von Mosaiken der Alhambra kennen. Die Klassifikation derWandmustergruppen ist klassisch: Es gibt genau 17 wesentlich verschiedene Wandmustergruppen. Aus geometrischer Sicht sind damit zugleich die kompakten zwei-dimensionalen Orbifolds mit Euklidischer Metrik klassifiziert; und auf darstellungstheoretischer Seite ist diese Klassifikation Teil der Klassifikation erblicher Kategorien über dem K?rper der reellen Zahlen.Da ganzzahlige Strukturen einen Zugang erfordern, der verschiedene mathematischen Teildisziplinen einbindet, beinhaltet unsere Unternehmung ein breites Forschungsprogramm von algebraischer Geometrie zur Analysis auf Mannigfaltigkeiten, von geometrischer Gruppentheorie und algebraischer Kombinatorik zur Darstellungstheorie assoziativer Algebren. Mit den vereinten Kr?ften der beteiligten Universit?ten beabsichtigen wir bedeutende Fragestellungen in der algebraischen und analytischen Theorie automorpher Formen, der kategoriellen Darstellungstheorie und algebraischen Geometrie sowie der klassischen und p-adischen harmonischen Analysis auf symmetrischen R?umen zu beantworten.

DFG-Verfahren Transregios

Laufende Projekte

A01 - Die Struktur von (Fast-)Gittern – Algebra, Analysis und Arithmetik (Teilprojektleiterinnen / Teilprojektleiter Alfes-Neumann, ClaudiaBaake, MichaelVoll, Christopher)

A02 - Algebraische und arithmetische Aspekte von Aperiodizit?t (Teilprojektleiter Baake, MichaelKlüners, Jürgen)

A03 - Codes und Designs (Teilprojektleiterinnen / Teilprojektleiter Baumeister, BarbaraR?sler, MargitSchmidt, Kai-Uwe)

A04 - Kombinatorische Euler-Produkte (Teilprojektleiter Blomer, ValentinKlüners, JürgenVoll, Christopher)

A05 - Affine Kac-Moody Gruppen: Analysis, Algebra und Arithmetik (Teilprojektleiter Burban, IgorBux, Kai-UweGl?ckner, Helge)

A06 - Zetafunktionen ganzzahliger K?cherdarstellungen (Teilprojektleiter Crawley-Boevey, WilliamVoll, Christopher)

A07 - Matroide, Codes und ihre q-Analoga (Teilprojektleiter Kühne, LukasSchmidt, Kai-Uwe)

B01 - Theta-Lifte und Gleichverteilung (Teilprojektleiterinnen / Teilprojektleiter Alfes-Neumann, ClaudiaBlomer, Valentin)

B02 - Spektraltheorie in h?herem Rang und unendlichem Volumen (Teilprojektleiter Blomer, ValentinWeich, Tobias)

B03 - Sph?rische harmonische Analysis auf affinen Geb?uden und Macdonald-Theorie (Teilprojektleiterinnen / Teilprojektleiter Bux, Kai-UweHilgert, JoachimR?sler, Margit)

B04 - Geod?tische Flüsse und Weyl Kammer Flüsse auf affinen Geb?uden (Teilprojektleiter Bux, Kai-UweHilgert, JoachimWeich, Tobias)

B05 - p-adische L-Funktionen, L-Invarianten und die Kohomologie arithmetischer Gruppen (Teilprojektleiter Januszewski, FabianSpie?, Michael)

B06 - ?quivariante Kohomologie und Shimura-Variet?ten (Teilprojektleiter Spie?, Michael)

C01 - Hyper-K?hler Variet?ten und Modulr?ume (Teilprojektleiter Barros, IgnacioVial, Ph.D., Charles)

C02 - Erbliche Kategorien, Spiegelungsgruppen und nichtkommutative Kurven (Teilprojektleiterinnen / Teilprojektleiter Baumeister, BarbaraBurban, IgorCrawley-Boevey, William)

C03 - Zahme Muster in der Darstellungstheorie von reduktiven Lie-Gruppen und arithmetischen Geometrie (Teilprojektleiter Burban, IgorCrawley-Boevey, WilliamJanuszewski, Fabian)

C04 - Punkte z?hlen auf K?chergrassmannschen (Teilprojektleiterinnen / Teilprojektleiter Franzen, HansSauter, Julia)

C06 - Stratifizierung derivierter Kategorien über allgemeiner Basis (Teilprojektleiter Krause, HenningLau, Eike)

C07 - Derived-splinters und full exceptional collections (Teilprojektleiter Krause, HenningLau, EikeVial, Ph.D., Charles)

C08 - Kohomologische Strukturen von hyper-K?hler-Variet?ten (Teilprojektleiter Lau, EikeVial, Ph.D., Charles)

Z - Zentrales Verwaltungsprojekt (Teilprojektleiter Bux, Kai-Uwe)

Antragstellende Institution Universit?t Bielefeld

Mitantragstellende Institution Universit?t Paderborn

Beteiligte Hochschule Rheinische Friedrich-Wilhelms-Universit?t Bonn

Sprecher Professor Dr. Kai-Uwe Bux

News

13.09.2024

In­ter­na­ti­o­na­le Top-Ma­the­ma­ti­ker*in­nen tref­fen sich in Pa­der­born

Mehr erfahren
Weitere Neuigkeiten

Detailinformationen

Projektleitung

contact-box image

Prof. Dr. Helge Gl?ckner

Unendlich-dimensionale Analysis und Geometrie

Zur Person
contact-box image

Prof. Dr. Joachim Hilgert

Lie-Theorie

Zur Person
contact-box image

Prof. Dr. Jürgen Klüners

Computeralgebra und Zahlentheorie

Zur Person
contact-box image

Prof. Dr. Margit R?sler

Harmonische Analysis

Zur Person
contact-box image

Prof. Dr. Tobias Weich

Institut für Mathematik

Zur Person
contact-box image

Prof. Dr. Kai-Uwe Schmidt

Diskrete Mathematik

Zur Person
contact-box image

Prof. Dr. Igor Burban

Algebra

Zur Person
contact-box image

Prof. Dr. Fabian Januszewski

Algebra und Zahlentheorie

Zur Person
contact-box image

Jun. Prof. Dr. Ignacio Barros

Komplexe Algebraische Geometrie

Zur Person
contact-box image

PD Dr. Hans Franzen

Algebra

Zur Person
contact-box image

Claudia Alfes-Neumann

Universit?t Bielefeld

Zur Person (Orcid.org)
contact-box image

Michael Baake

Universit?t Bielefeld

Zur Person (Orcid.org)
contact-box image

Barbara Baumeister

Universit?t Bielefeld

Zur Person (Orcid.org)
contact-box image

Valentin Blomer

Universit?t Bonn

Zur Person (Orcid.org)
contact-box image

Kai-Uwe Bux

Universit?t Bielefeld

Zur Person (Orcid.org)
contact-box image

William Crawley-Boevey

Universit?t Bielefeld

Zur Person (Orcid.org)
contact-box image

Henning Krause

Universit?t Bielefeld

Zur Person (Orcid.org)
contact-box image

Lukas Kühne

Universit?t Bielefeld

Zur Person (Orcid.org)
contact-box image

Eike Lau

Universit?t Bielefeld

contact-box image

Julia Sauter

Universit?t Bielefeld

contact-box image

Michael Spie?

Universit?t Bielefeld

contact-box image

Charles Vial

Universit?t Bielefeld

Zur Person (Orcid.org)
contact-box image

Christopher Voll

Universit?t Bielefeld

Zur Person (Orcid.org)

Kooperationspartner

Universit?t Bielefeld

Kooperationspartner

Universit?t Bonn

Kooperationspartner

Zur Website