Projektlogo

SAIL - Nachhaltiger Lebenszyklus von intelligenten soziotechnischen Systemen

?berblick

Durch SAIL wird das bestehende Forschungsnetzwerk aus Uni Bielefeld, Uni Paderborn, TH OWL und FH Bielefeld im Bereich der künstlichen Intelligenz (KI) vertieft und weiterentwickelt. SAIL adressiert die n?chste Stufe der KI-Entwicklung, indem der gesamte Lebenszyklus von KI-Systemen und deren technologische und gesellschaftliche Auswirkungen in den Blick genommen werden. SAIL ist dementsprechend interdisziplin?r angelegt und bindet Wissenschaftler:innen aus der Kern-KI, aus den Ingenieurwissenschaften sowie aus den Sozial- und Geisteswissenschaften ein. Das Forschungsprogramm ist inhaltlich in drei Grundlagens?ulen (?research pillars“) R1-R3 und zwei Anwendungsgebiete (?application domains“) A1 und A2 unterteilt. R1 betrachtet insbesondere das Zusammenspiel von KI und menschlichen Partnern bei der Bewertung und Abstimmung von Fehlern und Zielen. R2 zielt auf ausgereifte KI-Systeme, um deren m?glicherweise unerwünschte langfristige Auswirkungen auf funktionaler, kognitiver und gesellschaftlicher Ebene zu modellieren und abzumindern. R3 untersucht den gesamten KI-Lebenszyklus bezüglich der Effizienz, damit der praktische Einsatz von KI-Systemen mit m?glichst wenig Energie-, Zeit- und Speicherbedarf und m?glichst geringer kognitiver Anstrengung beim menschlichen Partner m?glich ist. Die angezielten Anwendungsgebiete sind intelligente industrielle Arbeitsumgebungen (A1) und adaptive Assistenzsysteme für die Gesundheitsfürsorge (A2). Zur Umsetzung des Forschungsprogramms werden an den Universit?ten Juniorprofessuren und grundlagenorientierte Nachwuchsgruppen und an den Fachhochschulen anwendungsorientierte Nachwuchsgruppen eingerichtet. Au?erdem wird ein umfangreiches Promotionsprogramm initiiert, das auf die Vertiefung der Vernetzung zwischen den Partnern abzielt. Darüber hinaus sind umfassende strukturbildende Ma?nahmen vorgesehen, um die Region Ostwestfalen-Lippe innerhalb von NRW in der KI-Forschung nachhaltig zu st?rken.

Prof. Dr. Sebastian Peitz ist Principal Investigator im Projekt R2.3 ?Human-centered continuous optimization“.

Key Facts

Grant Number:
NW21-059D
Profilbereiche:
Intelligente Technische Systeme, Nachhaltige Werkstoffe, Prozesse und Produkte
Art des Projektes:
Forschung
Laufzeit:
08/2022 - 07/2026
Beitrag zur Nachhaltigkeit:
Industrie, Innovation und Infrastruktur
Gef?rdert durch:
MKW NRW
Websites:
Homepage
Projektbeschreibung bei der FH Bielefeld
Current research projects
Projektbeschreibung bei JAII
Projektseite DICE

News

06.05.2024

In­ter­na­ti­o­na­le Zu­sam­me­n­a­r­beit beim The­ma ?nach­hal­ti­ge künst­li­che In­tel­li­genz“

Mehr erfahren
Weitere Neuigkeiten

Detailinformationen

Projektleitung

contact-box image

Prof. Dr. Reinhold H?b-Umbach

Nachrichtentechnik (NT) / Heinz Nixdorf Institut

Zur Person
contact-box image

Prof. Dr. Marco Platzner

Technische Informatik

Zur Person
contact-box image

Prof. Dr.-Ing. habil. Ansgar Tr?chtler

Regelungstechnik und Mechatronik / Heinz Nixdorf Institut

Zur Person
contact-box image

Prof. Dr. Christian Plessl

Hochleistungsrechnen

Zur Person
contact-box image

Prof. Dr.-Ing. Roman Dumitrescu

Advanced Systems Engineering / Heinz Nixdorf Institut

Zur Person
contact-box image

Prof. Dr.-Ing. habil. Walter Sextro

Lehrstuhl für Dynamik und Mechatronik (LDM)

Zur Person
contact-box image

Jun.-Prof. Dr. Sebastian Peitz

Data Science for Engineering

Zur Person
contact-box image

Prof. Dr. Katharina Rohlfing

Profilbereich Transformation und Bildung

Zur Person
contact-box image

Prof. Dr. Eric Bodden

Heinz Nixdorf Institut

Zur Person
contact-box image

Prof. Dr. Axel-Cyrille Ngonga Ngomo

Sonderforschungsbereich Transregio 318

Zur Person
contact-box image

AOR. Dr. Ilona Horwath

Technik und Diversity

Zur Person
contact-box image

Jun. Prof. Dr. Suzana Alpsancar

Angewandte Ethik mit Schwerpunkt Technikethik in der digitalen Welt

Zur Person

Kooperationspartner

Universit?t Bielefeld

Kooperationspartner

Hochschule Bielefeld – University of Applied Sciences and Arts

Kooperationspartner

Zur Website

Technische Hochschule Ostwestfalen-Lippe (TH OWL)

Kooperationspartner

Zur Website

Publikationen

EDGE: Evaluation Framework for Logical vs. Subgraph Explanations for Node Classifiers on Knowledge Graphs
R. Sapkota, D. K?hler, S. Heindorf, in: Proceedings of the 33rd ACM International Conference on Information and Knowledge Management (CIKM ’24), ACM, Boise, Idaho, USA, 2024.
LitCQD: Multi-Hop Reasoning in Incomplete Knowledge Graphs with Numeric Literals
C. Demir, M. Wiebesiek, R. Lu, A.-C. Ngonga Ngomo, S. Heindorf, ECML PKDD (2023).
Neural Class Expression Synthesis
N.J. KOUAGOU, S. Heindorf, C. Demir, A.-C. Ngonga Ngomo, in: C. Pesquita, E. Jimenez-Ruiz, J. McCusker, D. Faria, M. Dragoni, A. Dimou, R. Troncy, S. Hertling (Eds.), The Semantic Web - 20th Extended Semantic Web Conference (ESWC 2023), Springer International Publishing, 2023, pp. 209–226.
Neuro-Symbolic Class Expression Learning
C. Demir, A.-C. Ngonga Ngomo, International Joint Conference on Artificial Intelligence (2023).
Alle Publikationen anzeigen