Quan­ten­ex­pe­ri­men­te und Hoch­leis­tungs­rech­nen: Neue Me­tho­de er­m?g­licht kom­ple­xe Be­rech­nun­gen in­ner­halb kür­zes­ter Zeit

 |  ForschungOptoelektronik und PhotonikQuantencomputingHigh Performance ComputingPressemitteilungInstitut für Photonische Quantensysteme (PhoQS)Paderborn Center for Parallel Computing (PC2)

Ver?ffentlichung in ?Quantum Science and Technology“

Wissenschaftler der Universit?t Paderborn haben zum ersten Mal Hochleistungsrechnen (HPC, High Performance Computing) zur Analyse eines Quantenphotonikexperiments im gro?en Ma?stab eingesetzt. Konkret ging es um die tomografische Rekonstruktion von experimentellen Daten eines Quantendetektors. Dabei handelt es sich um ein Ger?t, das einzelne Photonen, also Lichtteilchen, misst. Dazu haben die Forscher u. a. neue HPC-Software entwickelt. Ihre Ergebnisse wurden jetzt im Fachmagazin ?Quantum Science and Technology“ ver?ffentlicht.

Quantentomographie an einem photonischen Quantendetektor im Megama?stab

Hochskalierte Photonendetektoren kommen in der Quantenforschung immer h?ufiger zum Einsatz. Diese Ger?te exakt zu charakterisieren, ist von zentraler Bedeutung, um sie effektiv für Messungen nutzen zu k?nnen – und bislang eine Herausforderung. Denn damit gehen gro?e Datenmengen einher, die analysiert werden müssen, ohne deren quantenmechanische Struktur zu vernachl?ssigen. Geeignete Werkzeuge zur Verarbeitung dieser Datens?tze sind insbesondere für künftige Anwendungen wichtig. W?hrend klassische Ans?tze keine vergleichbaren Berechnungen von Quantensystemen jenseits einer bestimmten Skala zulassen, haben sich die Paderborner Wissenschaftler Hochleistungsrechnen für die Charakterisierungs- und Zertifizierungsaufgaben zunutze gemacht. ?Durch die Entwicklung von ma?geschneiderten Open-Source-Algorithmen unter Verwendung von High Performance Computing haben wir eine Quantentomographie an einem photonischen Quantendetektor im Megama?stab durchgeführt“, erkl?rt Physiker Timon Schapeler, der das Paper zusammen mit dem Informatiker Dr. Robert Schade sowie Kollegen vom PhoQS (Institut für Photonische Quantensysteme) und dem PC2 (Paderborn Center for Parallel Computing) geschrieben hat. Das PC2, eine interdisziplin?re Forschungseinrichtung der Universit?t Paderborn, betreibt die HPC-Systeme. Die Hochschule geh?rt zu den Nationalen Hochleistungsrechenzentren in Deutschland und damit zur Spitze des universit?ren High Performance Computings.

?Beispielloses Ausma?“

?Die Ergebnisse er?ffnen dem Bereich der skalierbaren Quantenphotonik ganz neue M?glichkeiten, was die Gr??e der zu analysierenden Systeme angeht. Das hat zum Beispiel auch Auswirkungen auf die Charakterisierung von photonischer Quantencomputer-Hardware“, so Schapeler weiter. Ihre Berechnungen zur Beschreibung eines Photonendetektors haben die Wissenschaftler innerhalb weniger Minuten durchgeführt – schneller als alle anderen zuvor. Auch Berechnungen mit noch gr??eren Datenmengen hat das System innerhalb kürzester Zeit bewerkstelligt. Schapeler: ?Das zeigt, in welch beispiellosem Ausma? dieses Werkzeug auf quantenphotonische Systeme angewendet werden kann. Soweit wir wissen, ist unsere Arbeit der erste Beitrag auf dem Gebiet des klassischen Hochleistungsrechnens, das experimentelle Quantenphotonik in gro?em Ma?stab erm?glicht. Dieser Bereich wird zunehmend an Bedeutung gewinnen, wenn es darum geht, den Quantenvorteil in quantenphotonischen Experimenten nachzuweisen. Und zwar in Gr??enordnungen, die mit herk?mmlichen Mitteln nicht berechnet werden k?nnen.“

Grundlagenforschung zur Gestaltung der Zukunft

Schapeler ist Doktorand in der von Prof. Dr. Tim Bartley geleiteten Arbeitsgruppe ?Mesoskopische Quantenoptik“. Darin erforscht das Team die fundamentale Physik der Quantenzust?nde des Lichts und deren Anwendungen. Diese Zust?nde bestehen aus mehreren 10, 100 oder 1000 Photonen. ?Die Gr??enordnung ist entscheidend, da sie den grundlegenden Vorteil von Quanten- gegenüber klassischen Systemen verdeutlicht. Der Nutzen ist in vielen Bereichen sichtbar, darunter beispielsweise Messtechnik, Datenverarbeitung und Kommunikation“, erl?utert Bartley. Das gro?e Gebiet der Quantenforschung z?hlt zu den Profilbereichen der Universit?t Paderborn. Anerkannte Expert*innen betreiben Grundlagenforschung, um durch konkrete Anwendungen die Zukunft zu gestalten.

Der Fachartikel ist online aufrufbar.

Weitere Informationen zur Quantenforschung an der Universit?t Paderborn gibt es auf unserer Themenseite.

Foto (Universit?t Paderborn, Hennig/Mazhiqi): Wissenschaftler der Universit?t Paderborn haben zum ersten Mal Hochleistungsrechnen (rechts im Bild der Paderborner Supercomputer Noctua) zur Analyse eines Quantenphotonikexperiments im gro?en Ma?stab eingesetzt.

Kontakt

business-card image

Timon Schapeler

Mesoskopische Quantenoptik

Quantendetektortomographie von Einzelphotonendetektoren

E-Mail schreiben +49 5251 60-4593
business-card image

Dr. Robert Schade

Paderborn Center for Parallel Computing (PC2)

Fachberater Theoretische Physik/Chemie

E-Mail schreiben +49 5251 60-1738