Super-Brownsche Bewegung mit einfacher Punktquelle: Regularisierung, Approximation und Pfadeigenschaften
?berblick
Sogenannte Hamiltonoperatoren mit Punktwechselwirkungen werden seit langer Zeit intensiv und gewinnbringend in der Mathematischen Physik als idealisiertes Modell eines quantenmechanischen Systems mit extrem kurzer Reichweite untersucht. Einen sehr guten ?berblick zu den bisher erzielten Resultaten gibt die von Albeverio et al. verfasste Monographie mit dem Titel "Solvable Models in Quantum Mechanics". Die Punktwechselwirkungen lassen sich mit Hilfe klassischer Resultate der Operatortheorie als geeignete selbstadjungierte Erweiterungen von Einschr?nkungen des Laplaceoperators definieren. Es zeigt sich allerdings auch, dass sich diese Operatoren durch geeignet gew?hlte Schr?dingeroperatoren mit kurzer Reichweite approximieren lassen. Die Definition dieser Punktwechselwirkungen l?sst zun?chst nicht darauf schlie?en, dass diese Objekte in irgendeiner Art und Weise probabilistisch interpretierbar sind. Im Jahr 2004 allerdings konstruierten K. Fleischmann und C. Mueller auf hochgradig nicht-triviale Weise einen ma?wertigen stochastischen Prozess, der gewisserma?en eine probabilistische Interpretation der Punktwechselwirkungen erlaubt. Ein genaueres Verst?ndnis sogar grundlegender Eigenschaften dieses stochastischen Prozesses fehlt allerdings bisher noch. Das beantragte Projekt untersucht die Frage, inwieweit sich der von Fleischmann und Müller konstruierte Prozess durch besser untersuchte Prozesse approximieren l?sst. Hierbei zielen wir auf ein Approximation durch regul?re stochastische Superprozesse ab. Es soll weiter untersucht werden, inwieweit sich Eigenschaften der approximierenden Prozesse auf den Grenzprozess übertragen.
DFG-Verfahren Sachbeihilfen
Key Facts
- Grant Number:
- 429778995
- Art des Projektes:
- Forschung
- Laufzeit:
- 07/2019 - 12/2022
- Gef?rdert durch:
- DFG
- Website:
-
DFG-Datenbank gepris